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Potential and Niches



e Additional (optional) textbooks:
Michal K Stachowiak & Emmanuel S Tzanakakis,“ Stem Cells: From Mechanisms to
Technologies” - World Scientific, 2011. http://www.worldscientific.com/
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Figure 5.1 The stem cell concept (Part 1)

(A) Single-cell asymmetry
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Figure 5.1 The stem cell concept (Part 2)

(B) Population asymmetry (symmetrical differentiation)
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Unfolding Developmental Potential of Stem Cells
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170 billion cells (neurons an
equal number of glial cells of of
great variety of types). This
diversity begins with the
multipotent neuroepithelial cells
of the neural tube Neural Stem
Cells.



Adult stem cells (typically multipotent):
create restricted array of cells in culture and have a finite
number of generations for self-renewal (contributes to

aging)

- hematopoietic stem cells that function to generate all
the cells of the blood,

- Germinal stem Cells (testes, ovarian)

- brain

epidermis,
muscle,
teeth,

gut,

lung,
cornea,
etc.,



Figure 5.4 To divide or not to divide: overview of stem cell regulatory mechanisms — Niche Factors
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Figure 5.5 Establishment of the inner cell mass Niche in blastocyst
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Figure 5.6 Divisions about the apicobasal axis
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Figure 12.15 Possible pathway initiating the distinction between inner cell mass and trophoblast

(Part 3)

(C) Inner cell mass Hypoblast cells
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Apicobasal partitioning in Morula

ECM - integrins
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B) Apical proteins
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Figure 5.7 Hippo - Possible pathway initiating the
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Figure 12.17 Tissue and germ layer formation in the early human embryo (Part 2)
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Table 5.1 Some stem cell niches of adult humans

TABLE 5.1 Some stem cell niches of adult humans

[ Stem cell type

Niche location

Cellular components of niche

LOW TURNOVER?
Brain (neurons and glia)

Skeletal muscle
HIGH TURNOVER?

Mesenchymal stem cells (MSCs)

Intestine

Hematopoietic (blood-forming)
stem cells (HSCs)

Epidermis (skin)
Hair follicle

Sperm

Ventricular-subventricular zone (V-SVZ; see Fig-
ure 5.10), subgranular zone

Between basal lamina and muscle fibers

Bone marrow, adipose tissue, heart, placenta,
umbilical cord

Base of small intestinal crypts (see Figure 5.13)

Bone marrow (see Figure 5.15)

Basal layer of epidermis
Bulge (see Figure 16.17)

Testes

Ependymal cells, blood vessel
epithelium

Muscle fiber cells

Probably blood vessel epithelium

Paneth cells, MSCs

Macrophages, T, cells, osteoblasts,
pericytes, glia, neurons, MSCs

Dermal fibroblasts

Dermal papillae, adipocyte precursors,
subcutaneous fat, keratin

Sertoli cells (see Figure 6.21)

@Niches with low rates of cell turnover generate stem cells for repair, slow growth, and (in the case of neurons) learning. Niches with high turnover
are constantly producing new cells for bodily maintenance.

DEVELOPMENTAL BIOLOGY 11e, Table 5.1
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Figure 5.8 Stem cell niche in Drosophila testes (Part 1)
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Figure 5.8 Hub cells “Unpaired” dictates an assymetrical fate of the Stem cell progeny
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Figure 5.8 Unpaired dictates an assymetrical fate of the Stem cell progeny

Unpaired gene expressed in (B)
Hub cells
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Figure 5.9 Drosophila ovarian stem cell niche germanium.
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Figure 5.3 Blood-forming (hematopoietic) stem cells (HSCs)

Best know adult stem cells - Hematopoietic multipotent stem cells > all blood cells

Hematopoietic stem cells
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Figure 5.15 Model of adult HSC Hemataopetic Stem Cell niche

Factors controlling:
wnt, Notch, TGF,
integrins, CXCL12(SDF1)
Norepinephrine (circadian) .-

Circadian rhythms

axon

Bone matrix

Contact with osteoblasts
Long-term reservoir
More hypoxic

L J[OL©J\ O J\ O Inhibited by angiopetin,

)

( Jn\i "7 \\

o A U

ol o/

=N

e Pl ST PELEPELELEL. =T i
< o < = < TR, ; R thrombopoetin
Osteoblast Osteoclast > 5 quiescent HSC niche
S ° °
s ot = =
: —— A °s
r g — = Q < — o= & o ® Short-term
) ——C A — active HSC
=) b @ T ~ " Mobile HSC/
” y 2\ A Short-term > _ progenitor cell
AcIophasL s cell /Mesenchymal quiescent HSC T ieti
Stem call \ _ Hematopoietic

stem cell niche

~ Contact with blood vessels
Open pore short-term reservoir

Ao
SNTE

S if:‘:f 2% /b g Eixlothelta Perivascular|  LESS hypoxic
~ — pr_—— 4 cc Short-term niche ;
v Angiopoietin-1 \\ = ,;/‘f\ <« active HSC Activated by MSC
= Thrombopoietin - . R, I . \
e CXCLI12/SDF1 S /Q\\
¥ : =SS =

* Noradrenaline Q S
Oxygen-rich — RBCs@

Hypoxic

DEVELOPMENTAL BIOLOGY 11e, Figure 5.15

© 2016 Sinauer Associates, Inc.



Mesenchymal Stem Cell : Supporting a variety of adult Tissues

Multipe Sources and Niches:

- Bone marrow (original finding - bone marrow derived stem cells)

- dermis of the skin, bone, fat, cartilage, tendon, muscle, thymus, cornea, and dental
pulp, umbilical cord and placenta

- MSC - “Split personality” as (1) supportive stromal cells secreting ECM and (2) self-
renewing stem cells on the other.

Clonal plasticity

uIS9L0Z ©

v/ Jone!

U] ‘s3)e10SS

L1°§ anby ‘a1 | AD0T0IF TVINIWAOTIAIA

- In culture MSC clonal populations can
form different organs, examples: eosteoblasts
(green) and adipocytes (red)

- Paracrine control:
- PDGF & TGF-f signaling > chondrogenesis,
- FGF > bone cells

Figure 5.17 A mesensphere containing two derived cell types



Figure 5.18 Mesenchymal stem cell differentiation is influenced by the elasticity of the matrices

upon which the cells sit

ECM laminin keep MSCs in a state of undifferentiated “stemness”
Physical matrix elasticity controls cell differentiation
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Neural Stem Cells Niche in Developing CNS

How to get
' _ from here




Can cells proliferate to make new neurons in adult

brain?

NO - new neurons be made Santiago Ramon y Cajal’s dogma: “Everything may die, nothing may be
regenerated”

YES - Altman and Das 1965; Nottebohm 1985) reported the occurrence of adult neurogenesis in
rats, cats, and birds’ brains as early as 1962.

NO - (Rakic 1985; Eckenhoff and Rakic 1988) - had tried to identify, to no avail, stem cells in the
adult brains of higher primates

YES - (Eriksson et al. 1998) discovered an in vivo neurogenesis occurring in the adult human brain
by injecting a non-radioactive Bromodeoxy Uridine (BrdU), a synthetic analog of thymidine, to
monitor neuronal proliferation in terminal cancer patients. BrdU labelled cells expressed neuronal
markers
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Figure 1.9 Two types of microscopy are used to visualize the notochord and its separation of

vertebrate embryos into right and left halves (Part 1)

(A) Neural tube

Apical

Basal

Somite Notochord
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Neuroepithelial (stem) cells (NEC):

- the first multipotent neural stem cells of the embryo, make up the neural plate and
early neural tube (later transform to radial glia cells RGC),

- NEC are polarized along their apical to basal axis, single spans the tube wall.

- the apical NEC surface borders the internal cavity to be filled with the CSF in
neural tube,

- NCE basal surface forms an endfoot - swelling of its basal membrane, pial matter
a fibrous membranes that surround nervous tissues.

(A)
S-phase ” :
zone Wik 7Y %
Mitosis

DEVELOPMENTAL BIOLOGY 11e, Figure 14.1 (Part 1)
© 2016 Sinauer Associates, Inc.

Figure 14.1 Cell types of the CNS. (A) Scanning electron micrograph of a newly formed chick neural tube,
showing neuroepithelial cells at different stages of their cell cycles spanning the full width of the epithelium.



Microtubule and dynein dependent interkinetic nuclear migration (Fig. 14.1A; 14.1)

/ Progeny from
an asymmetrical

Mitosis cell division

Zone

DEVELOPMENTAL BIOLOGY T1e, Figure 14.1 (Part 1) Asymmetric (Shown) or Symmetric division
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Figure 14.9 Live imaging of neuroepithelial cell interkinetic nuclear migration and division of neural

stem cells in the zebrafish embryonic hindbrain

asymmetrical (1) and symmetrical (2) division

cell 1 cell 2
Oh,00min O0h,07min Oh,24min Oh,59min 1h,17min 1h,24min 1h,4lmin 2h,55min 5h,15min 7h, 00 min

Apical surface
DEVELOPMENTAL BIOLOGY 1Te, Figure 14.9
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Figure 14.9 Live imaging of neuroepithelial cell interkinetic nuclear migration and cell division cells zebrafish
embryonic hindbrain. Two adjacent progenitor cells in the germinal epithelium were recorded over 7 hours (cell
membranes (green) and nuclei (red). A reporter gene specifically marks neurons (yellow).

Cell 1 —asymmetric division,

CelLL 2 —symmetric division



Figure 14.14 symmetrical versus asymmetrical division depends on the plane of division
Mitotic spindle parallel — symmetric
Mitotic spindle oblique - asymmetric

(B)

Apical surface

A
v
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Figure 14.14 Asymmetrical division of radial glia mediated by Par3 and Notch
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Figure 14.14 Asymmetrical division of radial glia mediated by Par3 and Notch.

Inheritance matters:

Old centriole + old luminal cilium = exposure to mitotic factors
New centriole +new basal = no mitotic factors

More Par-3 >high Notch, N-cadherin >stem cell
Less Par-3 >Delta > neuron




Figure 14.11 NEC and later radial glia cells (RGC) provide tracks for neuron migration)

Neuron- epithelial cells Neuron-Glia (astroctactin, N-cadherins)
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Figure 14.12 Determination of cortical laminar identity in the ferret cerebrum (Part 3)
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Figure 14.10 Summary model of neurogenesis in the cerebral cortex
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Figure 14.13 Building cortical layers by Caja-Retzius cells secreted reelin & Disabled-1 signaling
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Figure 14.13 Model of Reelin regulation of directed neuronal migration (Part 2)

B 14 (C) Dabl knockout
(B) Wild-type (only lost in green cells)

DEVELOPMENTAL BIOLOGY 17e, Figure 14.13 (Part 3)
DEVELOPMENTAL BIOLOGY 11, Figure 14.13 (Part 2) © 2016 Sinauer Associates, Inc.

© 2016 Sinauer Associates, Inc.

GFP expressing progenitors



Figure 5.10 Modified Niche - ventricular-subventricular zone stem cell niche and its regulation
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Figure 5.10 Schematic of the ventricular-subventricular zone stem cell niche and its regulation
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Figure 5.21 Inducing Experimental stem cell differentiation from ESCs using Paracrine &
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Figure 5.22 Human ESCs cultured in confined micropatterned discs demonstrate a pattern of
differential gene expression similar to that seen in the early embryo

(A) Micropatterned cultures (B) Radially patterned gene expression

Micropatterned discs Bl Ectoderm (Sox2*)
] Trophectoderm (Cdx2*)
B Mesoderm (Bra*)
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https://www.ncbi.nlm.nih.gov/pubmed/16904174

Apical to basal pattern of brain and organoid cortex development

14 day olCumiSiaiss

Inner zone: proliferating Ki67* stem cells; Intermediate zone:



22 day old organoids see Olig4+ cells (marker for mature oligoc



MODELLING ABNORMAL BRAIN DEVELOPMENT WITH
SCHIZOPHRENIA IPSC

Kié7 PAN NEUN
DAPI

Stachowiak, C.A. Benson, Elahi, Narla, Freedman, Brennand, Klejbor, Stachowiak. Cerebral organoids reveal early cortical maldevelopment in schizophrenia — role of FGFR1. Nature Translation
Psych.



Figure 5.27 Modeling human microcephaly with a patient-specific cerebral organoid (Part 1)
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Figure 5.27 Modeling human microcephaly with a patient-specific cerebral organoid (Part 2)

(B) Neurons Dividing cells
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THE END



